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Abstract - In this paper we reformulate global optimization problems in terms
of boundary value problems (BVP). This allows us to introduce a new class
of optimization algorithms. Indeed, current optimization methods, including
non-deterministic ones, can be seen as discretizations of initial value problems
for differential equations, or systems of differential equations. Furthermore, in
order to reduce computational time approximate state and sensitivity evaluations
are introduced during optimization. Lastly, we demonstrated the efficacy of two
algorithms, included in the former class, on two academic test cases and on
the design of a fast microfluidic protein folding device. The aim of the latter
design is to reduce mixing times of proteins to microsecond timescales. Results
are compared with those obtained with a classical genetic algorithm.

Keywords: Shape optimization, Global optimization, Dynamical systems,
Boundary value problem, Microfluidic mixers.

1 Introduction

Global solution of minimization problems is of great practical importance and
this is one of the reason why evolutionary or genetic algorithms (GA) received
tremendous interest in recent years [1, 2]. The main difficulties with these
algorithms are their complexity in term of the number of evaluations of the
function, their lack of accuracy and their slow convergence.

Minimization algorithms can be shown being discrete forms of Cauchy prob-
lems for ordinary differential equation (or system of equations) for control pa-
rameters. We will see that if one introduces extra information on the infimum
global optimization can be formulated as boundary value problems for the same
equations [3, 4, 5]. A motivating idea is therefore to apply algorithms for the so-
lution boundary value problems to global optimization. This is our aim through
this paper. In particular, we consider the design of microfluidic protein folding
devices. The algorithm issued from our boundary value problem analysis is com-
pared to two genetic algorithms. It is also shown that GAs as well can be seen
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as discrete system of coupled ODEs. Therefore, the boundary value problem
analysis has been applied to them as well improving their performances.

This global optimization problem is also complicated because the involved
physic. It is multi-model in the sense that several partial differential equations
need to be solved. Simulation of these equations being computational intensive,
one also has to use low complexity approach in sensitivity and intermediate
state calculations.

Previous application of control theory to the design of microfluidic devices
based on simpler physics and only local minimization algorithms have been
reported [6, 7, 8].

In section 2, we recall the state of the art on fast microfluidic protein folding
devices design. Section 3 presents three global optimization algorithms with
associated mathematical background. In Section 4 low-cost sensitivity evalua-
tion approaches are presented. Section 5 introduces a short presentation of the
physic of the problem and its numerical solution. Finally, section 6 shows and
compares optimization results.

2 Fast Microfluidic Protein Folding devices

Microfluidic channel systems used in bio-analytical applications are fabricated
using technologies derived from microelectronics industry including lithography,
wet etching and bonding of substrates. Industrial applications of these tech-
niques concern DNA sequencing, new drug molecules trials, pollution detection
in water or food and protein folding [9].

Focusing on this last domain, important structural events occur on a mi-
crosecond time scale [10]. To resolve folding events of order 10 microseconds,
mixer designs are required that effect mixing in a few microseconds or less. This
can be performed, for instance, using photochemical initiation [11] and changes
in temperature [12], pressure [13, 14] or chemical potential, as in salt or chemical
denaturant concentration changes [15, 16, 17]. All these techniques provide per-
turbations of protein conformational equilibrium necessary to initiate folding.
In comparison to temperature and pressure-jump relaxation technique, folding
experiments based on changes in chemical potential, via rapid mixing of protein
solutions into and out of chaotrope solvents, are more versatile. The technique
is applicable to a wide range of proteins as most unfold reversibly in the pres-
ence of chemical denaturants such as urea and guanidine hydrochloride (GdCl)
[15].

Until recently, the main limitation of mixer-based experiments was their
inability to access very short timescales. Mixing time is ultimately limited by
the time required for molecular diffusion across a finite length scale, and diffusion
time scales as the square of diffusion length. Brody et al. [18] first proposed
rapid mixers based on hydrodynamic focusing as a way to address the issue
of reducing diffusion lengths under laminar flow conditions while minimizing
sample consumption. Hydrodynamic focusing has been used to measure protein
and RNA folding [19], with mixing times of a few hundreds of microseconds.

This paper discusses specific shape optimization for a new microfluidic mixer
based on a continuous flow principle originally proposed by Knight et al. [20],
and improved and demonstrated by Hertzog et al. [9]. The design leverages
hydrodynamic focusing on the micron scale to reduce diffusion lengths [9]. This
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mixer uses about eight orders of magnitude less labelled protein sample mass
flow than a previously reported ultra-fast protein folding mixer [21], with flow
rates of 3 nl/s and protein concentrations of tens of nanomolar.

3 Global optimization methods

We present three minimization methods: A typical genetic algorithm [22, 1],
a new global optimization method based on the solution of boundary value
problems, and an hybrid algorithm using ingredients from the two previous
approaches.

3.1 Genetic algorithm

Consider the minimization of a real functional J(x), the so-called fitness func-
tion, x ∈ Ωad is the optimization parameter and belongs to an admissible space
Ωad of dimension ndim. Genetic algorithms approximate the global minimum
(or maximum) of J , called the fitness function, through a stochastic process
based on an analogy with the Darwinian evolution of species [1]:

A first family, called ’population’, X1 = {(x)1l ∈ Ωad, l = 1, ..., Np} of Np

possible solutions in Ωad of the optimization problem, called ’individuals’, is
randomly generated in the search space Ωad. Starting from this population X1

we build recursively Ngen new populations Xi = {(x)i
l ∈ Ωad, l = 1, ..., Np} with

i = 1, .., Ngen through three stochastic steps:
We write Xi using the following (Np, ndim)-matrix form:

Xi =







xi
1(1) . . . xi

1(ndim)
...

. . .
...

xi
Np

(1) . . . xi
Np

(ndim)






(1)

At each iteration the following three steps are performed.

• Selection: each ’individual’, representing a potential solution of the prob-
lem, is ranked with respect to the fitness function J . In this process, better
individuals have higher chances to be chosen. They are called ’parents’.

Introducing S a binary (Np, Np)-matrix with, for each line i, a value 1 on
the jTh row when the jTh individual has been selected and 0 elsewhere

Xn+1/3 = SXn (2)

• Crossover: this process leads to a data exchange between two ’parents’
and apparition of new individuals called ’child’.

– We introduce C a real-valued (Np, Np)-matrix where for each couple

of consecutive lines (2i − 1, 2i) (1 ≤ i ≤
Np

2 ), the coefficients of the
l-Th and k-Th row are given by a 2 × 2 matrices of the form

[

λ1 1 − λ1

λ2 1 − λ2

]

(3)
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In this expression, λ1 = λ2 = 1 if no crossover is applied on the
selected ’parents’ l and k and are randomly chosen with a probability
pc in [0, 1] in the other case.

This step can be summarized as:

Xn+2/3 = CXn+1/3 (4)

• Mutation: This process leads to new parameter values. For each ’child’,
we determine with a fixed probability pm if their parameters should mute.

Introducing following families:

M+ = {M+i i = 1, . . . , Np} and M− = {M−j j = 1, . . . , ndim} and
{(εi,j) i = 1, . . . , Np j = 1, . . . , ndim/εi,j ∈ IR}

with M+i a binary (Np, Np)-matrix which keep unchanged the ith line of
the matrix Xn+2/3 and set to zero the other lines. M+j a (ndim, ndim)-

matrix which keep unchanged the jth column of matrix Xn+2/3 and set
to zero the other columns. εi,j is equal to 1 if no mutation is applied and
to (mutated value / (i, j) coefficient) otherwise.

In the same way, this step can be summarized as:

Xn+1 =

Np
∑

i=1

ndim
∑

j=1

εi,jM+iX
n+2/3M−j (5)

Therefore, genetics algorithms can be seen as discrete dynamic systems:

Xn+1 =

Np
∑

i=1

ndim
∑

j=1

εi,jM+i(CSXn)M−j (6)

this can be formally rewritten as:

Xn+1 − Xn = Λn
2XnΛn

3 − Xn

which is a particular discretization of a set of nonlinear 1st order ODEs [23]:

Ẋ = Λ2(X)XΛ3(X) − X (7)

where the construction of Λi has been described above.
With these three basic evolution processes, it is generally observed that the

best obtained individual is getting closer after each generation to the optimal
solution of the problem [1, 22].

Engineers like GAs because these algorithms do not require sensitivity com-
putation, perform global and multi-objective optimization and are easy to par-
allelize. Their drawbacks remain their weak mathematical background, their
computational complexity, their slow convergence and their lack of accuracy.
The semi-deterministic algorithm (SDA) below aims to address some of these
issues.
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3.2 Semi-deterministic multi-level optimization

Most deterministic minimization algorithms, which perform the minimization
of a function J : Ωad → IR, can be seen as discretizations of the following
dynamical system [4, 24, 3] where x denotes the vector of control parameters

belonging to an admissible space Ωad. xζ(ζ) = dx(ζ)
dζ . x0 ∈ Ωad is the initial

condition. ζ is a fictitious parameter. M is a local metric transformation and d
a direction in Ωad.

{

M(ζ)xζ(ζ) = −d(x(ζ))
x(ζ = 0) = x0

(8)

For example if d = ∇J , the gradient of the functional, and M = Id, the identity
operator, we recover the classical steepest descent method while with d = ∇J
and M(ζ) = ∇2J(x(ζ)) the Hessian of J , we recover the Newton method. Quasi-
Newton methods can also be recovered using approximate Hessian definition
[25].

Theoretical background of the method requires the following assumptions
[23]:

H1: J ∈ C2(Ωad, IR).

H2: the infimum Jm is known. This is often the case in industrial applica-
tions.

H3: the problem is admissible: the infimum is reached inside the admissible
domain: ∃xm ∈ Ωad, s.t. J(xm) = Jm.

H4: J is coercive (i.e. J(x) → ∞ when |x| → ∞).

Global optimization with system (8) is valid if the following system has a
solution:







M(ζ)xζ(ζ) = −d(x(ζ))
x(0) = x0

J(x(Zx0
)) = Jm with finite Zx0

∈ IR
(9)

This boundary value problem is over-determined (i.e. two conditions and
only one derivative). The previous over-determination is an explanation of why
we should not solve global optimization problems with methods which are partic-
ular discretizations of initial value problem for first order differential equations.
We could use variants of classical methods after adding a second order derivative
[4]:







ηxζζ(ζ) + M(ζ)xζ(ζ) = −d(x(ζ)),
x(0) = x0, ẋ(0) = ẋ0,
J(x(Zx0

)) = Jm

(10)

where xζζ(ζ) = d2x(ζ)
dζ2 .

The over determination can be removed, for instance, by considering x0 = v
for (8) (resp. ẋ(0) = v for (10)) as a new variable to be found by the minimiza-
tion of h(v) = J(xv(Zv)) − Jm, where xv(Zv) is the solution of (8) (resp. (10))
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found at ζ = Zv starting from v.

The algorithm A1(v1, v2) reads:

- (v1, v2) ∈ Ωad × Ωad given

- Find v ∈ argminw∈O(v2)h(w) where O(v2) = {t−−→v1v2, t ∈ IR} ∩ Ωad

- return v

The line search minimization might fail. For instance, a secant method de-
generates on plateau and critical points. In this case, we add an external level
to the algorithm A1, keeping v1 unchanged, and looking for v2 by minimizing a
new functional w → h(A1(v1, w)).

This leads to the following two-level algorithm A2(v1, v2):

- (v1, v2) ∈ Ωad × Ωad given

- Find v′ ∈ argminw∈O(v2)h(A1(v1, w)) where O(v2
2) = {t−−→v1v2, t ∈ IR}∩Ωad

- return v′

The choice of initial conditions in this algorithm contains the non-deter-
ministic feature of the algorithm. The construction can be pursued building
recursively hi(vi

2) = minvi
2
∈Ωad

= hi−1(Ai−1(v1, v
i
2)), with h1(v) = h(v) where i

denotes the external level.
A one dimensional geometrical construction of the different functionals (J ,

h, h2, h3) is shown in Figure 1 with J chosen to be non-convex, v1 fixed and vi
2

for i = 1, 2, 3 take successively all the values of the discretized search space. h2

and h3 show growing attraction basins around the infimum. In that case, the
attraction basin for h3 is the full search space.

Mathematical background for this approach and validation on academic test
cases and solution of nonlinear PDEs are available [23, 3, 5, 26, 24, 27].

In practice, this algorithm succeeds if the trajectory passes close enough to
the infimum (i.e. in Bε(xm) where ε defines the accuracy in the capture of the
infimum). This means that we should consider for h a functional of the form

h(v) =

∫ T

T1

(J(xv(τ)) − Jm)2dτ, for 0 < T1 < τ < T

where xv(τ) is the trajectory generated by (8) and T1 = T/2 for instance. Also,
in the algorithm above, xw(Zw) is replaced by the best solution found over
[0, Zw].

In cases where Jm is unknown, we set Jm = 0 and look for the best solution
for a given complexity and computational effort. This is the approach adopted
here where we predefine the effort we would like to make in each level of the
algorithm.
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3.3 Hybridization

It is interesting to notice that once GA is seen as a dynamical system (7) for
the population, it can be used as core optimization method in SDA. We call
this approach HGSA (hybrid genetic/semi-deterministic algorithm). The aim
here is to find a compromise between the robustness of GAs and low-complexity
features of SDA.

In practice, as final convergence is difficult with GA based algorithms, one
should always complete GA iterations by a descent method for better accuracy.
This is useful especially when the functional is flat around the infimum.

3.4 Academic test case

SDA, HGSA and GA algorithms have been compared on the Rastringin function
given by:

J(x) =
2

∑

n=1

(x2
n − cos(18xn))

with x ∈ [−5, 5]N and N = 10, 100, 1000. The infimum is 0 reached at the origin.

The two-level SDA algorithm A2(v1, v2) is used with (v1, v2) chosen ran-
domly in IRN × IRN and the dynamical system corresponding to the steepest
descent method as core optimization algorithm [3].

HGSA and GA are applied with the following parameters for the three as-
sociated stochastic processes (see section 3.1):

• The population size has been set to Np = 180 (resp. 10) for GA (resp.
HGSA).

• The selection is a roulette wheel type proportional to the rank of the
individual in the population.

• The crossover is barycentric in each coordinate with a probability of pc =
0.45.

• The mutation process is non-uniform with probability of pm = 0.15.

• A one-elitism principle, that consists in keeping the current best individual
in the next generation, has also been imposed.

All these parameters are fixed and used in all computations of this paper. These
values give a good compromise between computational complexity and accuracy
[5, 23]. For this test case, the generation number Ngen is unbounded for GA
and set to 10 for HSGA.

Results are presented on Table 1. The SDA algorithm is faster and more
efficient than GA and HGSA on this case. However the HGSA give a good com-
promise to the GA. This has also been observed, with other sets of parameters,
on other analytical cases available in the literature [5, 23].
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4 Low-cost sensitivity

Consider a general simulation loop, leading from shape parametrization x to
the cost functional J :

J(x) : x → q(x) → U(q(x)) → J(x, q(x), U(q(x))) (11)

where q is the shape geometry and U is the state equation solution.
The Jacobian of J is given by:

dJ

dx
=

∂J

∂x
+

∂J

∂q

∂q

∂x
+

∂J

∂U

∂U

∂q

∂q

∂x
(12)

The last term ∂J
∂U

∂U
∂q

∂q
∂x is the more expensive to compute as it requires the

linearization of the state equations.
One way to reduce computational effort of sensitivity evaluations is to use

reduced complexity models to provide an inexpensive approximation of the last
term in [12]. Consider a reduced model Ũ(x) ∼ U(q(x)). The incomplete
gradient of J with respect to x can be improved evaluating the former term in
(12) linearizing this model. Note that Ũ is never used in the definition of the

state U , but only in the approximation ∂Ũ
∂q

∂q
∂x . More precisely, we linearize the

following approximate simulation loop

x → q(x) → Ũ(x)
U(q(x))

Ũ(x)
(13)

freezing U(q(x))/Ũ(x) which gives

dJ

dx
≈

∂J(U)

∂x
+

∂J(U)

∂q

∂q

∂x
+

∂J(U)

∂U

∂Ũ

∂x

U(q(x))

Ũ(x)
. (14)

A simple example shows the importance of the scaling introduced in [13].
Consider U(x) = log(1 + x) scalar for simplicity and J(x) = U2(x) with
dJ(x)/dx = 2U(x)U ′(x) = 2 log(1 + x)/(1 + x) ∼ 2 log(1 + x)(1− x + x2...) and
consider Ũ(x) = x as the reduced complexity model, valid around x = 0. To see
the impact of the scaling factor we compare J ′(x) ∼ 2U(x)Ũ ′(x) = 2 log(1 + x)
with J ′(x) ∼ 2U(x)Ũ ′(x)(U(x)/Ũ(x)) = 2 log(1 + x)(log(1 + x)/x) ∼ 2 log(1 +
x)(1 − x/2 + x2/3...).

Another way to define low-complexity models is to use a different level of dis-
cretization for U with the same state equation. We can look for state sensitivity
on coarse meshes while the state is evaluated on much finer discretizations:

dJ

dx
=

∂J

∂x
(Uf , qf ) +

∂J

∂q

∂q

∂x
(Uf , qf ) +

∂J

∂U

∂U

∂q

∂q

∂x
(Ic

f (Uf ), qc)

where f and c subscripts denote fine and coarse meshes, Uf denote the state
equation solution evaluated on f , Ic

f (.) is an interpolation operator between
the fine and coarse meshes. By fine mesh we mean a mesh enough fine for the
solution to be mesh independent. This means that the linearization is performed
on a coarse mesh, however around an accurate state variable computed on a
fine mesh. In that case, obviously if the coarse mesh tends to the fine one, the
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approximate gradient tends to the gradient on the fine mesh. In addition, to
the two levels of refinements used for state and sensitivity calculations, state
evaluations for gradient calculation can be only made partially. Hence, only
partial convergence of solver method in the solution of the state equations is
required starting from Ic

f (Uf ). This corresponds to the fact that the semi-
deterministic algorithm above only needs a descent direction d such that d.∇J >
ε > 0 (see Figure 2) [23, 5, 3].

This last approach is easy to couple with any commercial code.

5 Fast-micro-mixer modelling

The SDA, HGSA and GA algorithms above are used to optimize the shape of a
given fast-micro-mixer in order to reduce its mixing time. There are no general
definitions of mixing time and several definitions of the degree of mixing exist
in the literature [28]. In most cases, the best definition of mixing time is an ad
hoc rule that takes into account the figures of merit of a specific application.
In section 5.3, we propose a mixing definition for our mixer that well charac-
terizes the temporal resolution of subsequent macromolecular folding kinetics
measurements.

5.1 Shape design

The mixer shape considered is a typical three-inlet/single-outlet channel archi-
tecture proposed by Knight [20] (see Figure 3). Due to the fact that our model is
symmetric we only study half of the mixer [9] (see Figure 4-Left). Our model is
a 2D approximation of the physical system [29]. Experiments show a 5 percent
deviation from a 3D modelling which is satisfactory for a 2D model to be used
as low-complexity model in optimization [9].

Our aim is to optimize the corner shapes. We parameterize the corner regions
by cubic splines (see Figure 4-Right). The total number of parameters is 8, 4
for each corner. In addition, we account for the following constraints:

• The considered fast-Micro-Mixer is 22µm long and 10µm large.

• The lithography step in fabrication limits the minimum feature size to a
minimum of 1 to 2 µm.

• The width of the side channel nozzles is set to 3 µm and the width of the
center channel nozzles to 2 µm to mitigate clogging issues.

• The depth of the channels is set to ∼ 10 µm to optimize the fluorescence
signal with a confocal system. In addition, it is difficult to etch deeper on
fused silica [9].

• The physical properties of buffers and guanidine hydrochloride denatu-
rant used here for protein folding studies have known parameters such as
density, viscosity, and diffusivity.

• Finally, the maximum side velocity is Us = 10−4m/s. Hence, a typical
flow Reynolds number based on sides channel thickness and flow inlet is
Rew = Usws

η ∼ 15.

9



• The device length scales required for the continuum assumption to hold are
different for the flow of liquids and gases [30]. For gases, the appropriate
length scale is typically the mean free path of the gas. In liquids, molecules
are tightly packed and we use the characteristic size of the molecule. For
water at standard conditions, the molecular diameter is 310−10m which
justify the continuum assumption for this problem as it gives a Knudsen
number of order 10−4.

Thus, the corresponding search space of the optimization problem is Ω =
[xmin

i , xmax
i ]8i=1 where xmin

i (resp. xmax
i ), the minimum (resp. maximum) value

of the ith parameter, are fixed by the previous constraints.

5.2 State equations

The mixer flow was analyzed using numerical solutions of the full Navier-Stokes
fluid flow equations and a convection diffusion equation describing concentration
fields c of the guanidine hydrochloride denaturant. Only steady configurations
have been considered as we are not interested in the behavior of the device
during its transient set up.

These flow simulations were used to explore the guanidine hydrochloride
performance of a variety of mixer designs with systematically varied flow and
geometric parameters. The model is applied to mixer shape designs described
in 5.1. Mixer flow and concentration field c are computed using the following
system of equations:







−∇.(η(∇u + (∇u)⊤)) + ρ(u.∇)u + ∇p = 0
∇.u = 0
∇.(−D∇c + cu) = 0

(15)

where (u, p) is the flow velocity vector and pressure field, ρ = 1013kg/m is
the density, η = 8.10−4Pa.s the dynamic viscosity and D = 2−9m2/s is the
diffusion coefficient.

Finally, the following boundary conditions are assumed: u = 3.210−4m/s on
side inlets, u = 3.210−6m/s on center inlet, u.t = 0 on the exit, u.n = 0 on the
center symmetry line, u = 0 elsewhere on the shape border. (t, n) is the local
orthonormal reference frame along the boundary. c is prescribed at inlet and
normal zero gradient is assumed for all other boundaries. c = 0 at side inlet
and c = 1 at center inlet.

The Incompressible Navier-Stokes equations are solved iteratively. Velocity
and pressure spacial discretization is based on P2-P1 Lagrange finite elements
to stabilize to realize the Ladyzhenskaya, Babuska and Brezzi (LBB) stabil-
ity condition. The convective diffusion equation is solved using a streamline-
upwind/Petrov-Galerkin (SUPG) method [31]. A direct damped Newton method
is then used to solve the nonlinear system coming from 15 [32].

5.3 Cost Function

The cost function to minimize is the mixing time of the considered Lagrangian
fluid particle travelling along the centerline. The mixing time is defined as the
time required to change local concentration from 90% to 30% of the inlet value
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c0:

J(x) =

∫ y30

y90

dy

v
(16)

Where y90 and y30 denote respectively the points along the symmetry line where
the concentration is at 90% and 30% of c0. v is the normal component of the
velocity.

This modelling has been validated by a posteriori prototyping [9]. We are
interested by an ensemble of state equations enough rich for the optimization
problem to be valid but also as simple as possible to control the computational
complexity. In particular, we need to keep the cost of state evaluations low for
genetic algorithms and also for sensitivity analysis.

6 Results and discussion

In GA (resp. HGSA) the maximum generation number is set to 30 (resp 10).
They start from a random initial population X1. SDA starts from an initial
shape made with a smoothed 90 degrees corners parameterized with splines
to keep the admissible regularity. The SDA descent direction is d = ∇J . In
three optimizations, the mixing time has been decreased from 8µs to 1.15µs (see
Figure 6-Right). Initial and optimized shapes are presented in Figure 6-Left.

For GA (resp. HGSA) the total number of functional evaluations is 5400
(resp. 2500). For SDA the evaluation number is 3500 with more than 90 % of
the evaluations on a coarse mesh with incomplete state evaluations (Figure 5).
The cost of an incomplete evaluation of the gradient is around two evaluations
of the functional on a fine mesh. Convergence histories are given in Figure 7.
As we can see on this Figure, SDA has visited several attraction basins before
exploring the best element basin. Each evaluation on the fine (resp. coarse)
level requires about one minute (resp. 20s) on a 3Ghz PC computer. Hence,
GA requires about 4 days, HGSA 2 days and SDA less than 4 hours to reach
the same minimum. In addition, with SDA the infimum is reached sooner in
the optimization (see Figure 7).

7 conclusion

An unified formulation for deterministic and stochastic global optimization
based on the solution of initial and boundary value problems for dynamics sys-
tems has been presented. The solution of this boundary value problem leads to
a recursive semi-deterministic minimization algorithm where non-deterministic
aspects is reduced as much as possible to limit the complexity of the method. To
keep the computational complexity low and make the problem easy to solve with
industrial softwares approximate gradient evaluation has been used on coarse
meshes.

Both algorithms over-perform in term of computational complexity genetic
algorithms when applied to the academic configurations and for the design of a
fast-micro-mixer.

Preliminary measurements performed using the mixer designs described here
show that the optimized mixers have significant improvements on mixing time.
Mixing time was shown to be decreased from 7 to 3 µs, and the comparisons
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between experiments and data are within the uncertainty of the measurements
[33].

References

[1] D. Goldberg. Genetic algorithms in search, optimization and machine
learning. Addison Wesley, 1989.

[2] C. M. Fonseca and J. Fleming. An overview of evolutionary algorithms in
multi-objective optimization. Evolutionary Computation, 3(1):1–16, 1995.

[3] B. Mohammadi and J-H. Saiac. Pratique de la simulation numérique.
Dunod, 2002.

[4] H. Attouch and R. Cominetti. A dynamical approach to convex mini-
mization coupling approximation with the steepest descent method. J.
Differential Equations, 128(2):519–540, 1996.

[5] B. Ivorra, B. Mohammadi, and P. Redont. Low-complexity global opti-
mization by solution of bvp. Journal of Global Optimization, submitted,
2005.

[6] B. Mohammadi, J. Santiago, and J. Molho. Incomplete sensitivities in
the design of minimal dispersion fluidic channels. Comput. Methods Appl.
Mech. Engrg., 192:4131–4145, 2003.

[7] B. Mohammadi, R. Bharadwadj, and J. Santiago. Design and optimization
of on-chip capillary electrophoresis. Electrophoresis Journal, 23(16):2729–
2744, 2002.

[8] B. Mohammadi, J. Molho, A. Herr, J. Santiago, T. Kenny, R. Brennen,
and Gordon G. Optimization of turn geometries for on-chip electrophoresis.
Analytical Chemestry, 73(6):1350–1360, 2001.

[9] D.E. Hertzog, X. Michalet, M. Jager, X. Kong, J.G. Santiago, S. Weiss, and
O. Bakajin. Femtomole mixer for microsecond kinetic studies of protein
folding. Analytical Chemistry, 75(24):7169–7178, 2004.

[10] Roder H. Stepwise helix formation and chain compaction during protein
folding. Proceedings of the National Academy of Sciences of the USA,
101:1793–1794, 2004.

[11] C. M. Jones, E. R. Henry, Y. Hu, C.-K. Chan, S. D. Luck, A. Bhuyan,
H. Roder, J. Hofrichter, and W. A. Eaton. Fast events in protein fold-
ing initiated by nanosecond laser photolysis. Proceedings of the National
Academy of Sciences of the USA, 90:11860–11864, 1993.

[12] S. J. Hagen and W. A. Eaton. Two-state expansion and collapse of a
polypeptide. Journal of Molecular Biology, 301:1037–1045, 2000.

[13] K. M. Pryse, T. G. Bruckman, B. W. Maxfield, and E. L. Elson. Kinetics
and mechanism of the folding of cytochrome c. Biochemistry, 31(22):5127–
5136, 1992.

12



[14] M. Jacob, G. Holtermann, D. Perl, J. Reinstein, T. Schindler, M. A. Geeves,
and F. X. Schmid. Microsecond folding of the cold shock protein measured
by a pressure jump technique. Biochemistry, 38:2882–2891, 1999.

[15] C.K. Chan, Y. Hu, S. Takahashi, D. L. Rousseau, and W. A. Eaton. Submil-
lisecond protein folding kinetics studied by ultrarapid mixing. Proceedings
of the National Academy of Sciences of the USA, 94:1779–1784, 1997.

[16] Pollack L., M. W. Tate, N. C. Darnton, J. B. Knight, S. M. Gruner, W. A.
Eaton, and R. H. Austin. Compactness of the denatured state of a fast-
folding protein measured by submillisecond small angle x-ray scattering.
Proceedings of the National Academy of Sciences of the USA, 96:10115–
10117, 1999.

[17] S.-H. Park, M. C. R. Shastry, and H. Roder. Folding dynamics of the
b1 domain of protein g explored by ultrarapid mixing. Nature, Structural
Biology, 6:943–947, 1999.

[18] J. P. Brody, P. Yager, R.E. Goldstein, and R.H. Austin. Biotechnology at
low reynolds numbers. Biophysical Journal, 71(6):3430–3441, 1996.

[19] R. Russell, I.S. Millet, M.W. Tate, L.W. Kwok, B. Nakatani, S.M. Gruner,
S.G.J. Mochrie, V.S. Pande, S. Doniach, D. Herschlag, and L. Pollack.
Rapid compaction during rna folding. Proceedings of the National Academy
of Sciences of the USA, 99:4266–4271, 2002.

[20] J. B. Knight, A. Vishwanath, J. P. Brody, and R. H. Austin. Hydrodynamic
focusing on a silicon chip: Mixing nanoliters in microseconds. Physical
Review Letters, 80:3863–3866, 1998.

[21] M. C. R. Shastry, S. D. Luck, and H. Roder. A continuous-flow capillary
mixer to monitor reactions on the microsecond time scale. Biophysical
Journal, 74:2714–2721, 1998.

[22] L. Dumas, V. Herbert, and F. Muyl. Hybrid method for aerodynamic shape
optimization in automotive industry. Computers and Fluids, 33(5):849–858,
2004.

[23] B. Ivorra. Semi-deterministic global optimization. PhD. University of
Montpellier 2, 2006.

[24] B. Mohammadi and O. Pironneau. Applied Shape Optimization for Fluids.
Oxford University Press, 2001.

[25] G.N. Vanderplaats. Numerical optimization techniques for engineering de-
sign. Mc Graw-Hill, 1990.

[26] L. Debiane, B. Ivorra, B. Mohammadi, F. Nicoud, A. Ern, T. Poinsot, and
H. Pitsch. Temperature and pollution control in flames. In Proceeding
of the Summer Program, pages 367–375, Center for Turbulence Research,
NASA AMES/Stanford University, USA, 2004.

[27] B. Mohammadi and O. Pironneau. Shape optimization in fluid mechanics.
Annual Review of Fluid Mechanics., 36:255–279, 2004.

13



[28] J. M. Ottino. The Kinematics of Mixing: Stretching, Chaos, and Transport.
Cambridge University Press, 1989.

[29] N. Darnton, O. Bakajin, R. Huang, B. North, J. Tegenfeldt, E. Cox,
J. Sturn, and R. H. Austin. Condensed matter. Journal of Physics, 13:4891–
4902, 2001.

[30] W. M. Deen. Analysis of Transport Phenomena. New York, Oxford Uni-
versity Press, 1998.

[31] T. Hughes and A. Brooks. A multi-dimensional upwind scheme with no
crosswind diffusion, in t. hughes, ed., finite element methods for convection
dominated flows. ASME, New York, 34:19–35, 1979.

[32] P. Deuflhard. A modified newton method for the solution of ill-conditioned
systems of nonlinear equations with application to multiple shooting. Nu-
mer. Math., 32:289–315, 1974.

[33] D.E. Hertzog, B. Ivorra, B. Mohammadi, O. Bakajin, and J.G. Santiago.
Optimization of fast microfluidic mixers for protein folding. in preparation.

14



SDA GA HGSA

N=10 66 6000 2600
N=100 70 O(1e5) O(1e4)
N=1000 80 O(1e7) O(1e5)

Table 1: Rastringin function. Total number of functional evaluations needed to
reach the infimum with an accuracy of 10−6.

Figure 1: J(x) (continuous line) chosen non convex, h (-.), h2 (–) and h3 (..)
built on a uniform sampling of the control space x ∈ [−10, 10] at each level of
the algorithm.
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Figure 2: Comparison of gradients computed on the fine f vs. coarse c meshes.

Average value of (sign(∇iJ
f − ∇iJ

c) |∇iJ
f−∇iJ

c|
|∇iJf |

) where i=1,..,8 denotes the

parameter number. We notice that the sign is always correct.

Figure 3: Typical fast-micro-mixer geometry. qs and qc are respectively the
side/center injection velocities. c is the denaturant concentration.
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Figure 4: Left: Half-Shape parameterization. The corners are denoted by C1

and C2. Right: Typical parameterization of a corner. Here C2. We consider 4
parameters: Cx, Cr, Cl, Cl2. Cy is fixed.

Figure 5: Left: For gradient calculation the state is partially evaluated on a
coarse mesh. Right: On each new shape the state is calculated on a fine mesh.
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Figure 6: Left: SDA and GA optimized shape superposed over Initial shape.
Parts in grey have been removed by the algorithms.Right: Concentration evo-
lution for the initial and Optimized shapes.

Figure 7: Left: Best element convergence history vs. generation iterations
for GA. Right: Best element convergence history vs. iterations for SDA and
HGSA.
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